#### **GEOMETRY AND TRIGONOMETRY (2022)**

- **1.** For any triangle with vertices A, B and C, the construction of  $\triangle ABC$  is possible if:
- A. AB + BC < AC
- B. AB + BC = AC
- $C. \quad AB + BC > AC$
- D.  $AB + BC \leq AC$ 
  - 2. What will be the resulting image if the point (4, -7) undergoes three consecutive transformations such as reflection on the line y = x, reflection on the line x = -1 and the translation by the vector  $\binom{4}{2}$ ?
    - A.  $\binom{9}{6}$ B.  $\binom{-5}{6}$ C.  $\binom{2}{6}$ D.  $\binom{-7}{6}$

3. Given that the vectors  $\begin{pmatrix} 2x-6\\4 \end{pmatrix}$  and  $\begin{pmatrix} 6\\2 \end{pmatrix}$  are parallel, find the value of x.

- A. 6
- B. 8
- C. 7
- **D.** 9

4. The vectors perpendicular to  $\begin{pmatrix} -3 \\ 6 \end{pmatrix}$ , *include* 

- I.  $\binom{6}{3}$ II.  $\binom{6}{-3}$
- III.  $\begin{pmatrix} -6\\ -3 \end{pmatrix}$ IV.  $\begin{pmatrix} -6\\ 3 \end{pmatrix}$ 
  - ••(3)
    - A. I, II and III
    - B. I and III only
    - C. I, and IV only
    - D. I, III, and IV only

- 5. To draw the perpendicular bisector of line segment AB, we open the compass
  - A. more than <sup>1</sup>/<sub>2</sub> AB
  - B. less than <sup>1</sup>/<sub>2</sub> AB
  - C. equal to <sup>1</sup>/<sub>2</sub> AB
  - D. full length of AB
- 6. A triangle has vertices A(1,3), B(4,2), and C(3,8). What unit transformation would produce an image with vertices  $A_2(3, -1)$ ,  $B_2(2, -4)$ , and  $C_2(8, -3)$ ?
  - A. A reflection on the x-axis
  - B. A reflection on the y-axis

# C. A rotation of $90^0$ clockwise about the origin

- D. A rotation  $90^{\circ}$  anticlockwise about the origin
- 7. Which of the following is **not** needed to inscribe a triangle in a circle?
- A. Locus of points equidistance from a fixed point

### B. Locus of points equidistance from two fixed points

- C. Locus of points equidistance from two intersecting straight lines
- D. Construction of a polygon the minimum number of sides
- 8. A polygon with 7 non-overlapping triangles is called
- A. Hexagon
- B. Octagon
- C. Nonagon
- D. Decagon
- 9. Which of the following are **true**?
- I. The opposite interior angles of a cyclic quadrilateral are supplementary
- II. The radius and a tangent of a circle join orthogonally
- III. Equal chords subtend the congruent angles at the circumference of a circle
- A. I and III only
- B. I and II only
- C. III and II only

# D. I, II and III

10. The bisectors of angles of a parallelogram form a .....

A. Square

B. Kite

### C. Rectangle

- D. Rhombus
- 11. The length of a chord of circle of radius 10 cm is 12 cm. Determine the distance of the chord from the centre
- A. 8 cm
- B. 7 cm
- C. 6 cm
- D. 5 cm
- 12. Which of the following is congruent to the transformation of the point (a, b) by scale

factor of -1 about the origin?

A. Reflection on the line y = 0

# B. Clockwise rotation of 180<sup>0</sup> about the origin

- C. Clockwise rotation of  $270^{\circ}$  about the origin
- D. Reflection on the line y = -x
- 13. If Q(1,2) R(4,3) S(6,6) are the three vertices of a parallelogram QRST, find the coordinates of the fourth vertex T.
  - A. (2,4)
  - **B.** (3,5)
  - C. (4,2)
  - D. (5,3)

### **SECTION B**

(a) Three interior angles of polygons are 150° each. If the remaining interior angles are 45 each, how many sides have the polygon? Hence name the polygon.

### Solution

(a)  $s = (n-2) \times 180$ 

Let k be the unknown number of interior angles of  $45^{\circ}$ Then n = 3 + k 3(150) + 45k = (n - 2)180  $450 + 45k = (3 + k - 2) \times 180$   $450 + 45k = (k + 1) \times 180$  450 + 45k = 180k + 180 450 - 180 = 180k - 45k270 = 135k

$$k = \frac{270}{135} = 2$$
  

$$\therefore n = 3 + k = 3 + 2 = 5 \text{ sides, which is a pentagon.}$$

(b) The angles  $20+2x^0$ ,  $50^0$ ,  $3x-40^0$  and  $120^0$  form a reflex angle. Find the

- i. Range of values of x
- ii. least integer value of x
- iii. greatest integer value of x

#### Solution

 $i.180^{\circ} < 20 + 2x + 50^{\circ} + 3x - 40^{\circ} + 120 < 360$  $180^{\circ} < 150 + 5x < 360$  $180^{\circ} - 150^{\circ} < 5x < 360 - 150^{\circ}$  $30^{\circ} < 5x < 210^{\circ}$  $30^{\circ} < 5x < 210^{\circ}$  $\frac{30^{\circ}}{5} < \frac{5x}{5} < \frac{210^{\circ}}{5}$  $6^{\circ} < x < 42^{\circ}$ 

ii. The least integer value of x is 7°.
iii. The greatest integer value of x is 41°

(c) A,B, C and D are points on a circle, centre O as shown in the figure below. AOBE and DCE are straight lines. CO = CE, Angle AOD = 69<sup>0</sup>. Find the value of x.



(a) Solution

$$< COB = x^{0}, \quad < OCE = 180^{0} - 2x^{0}, \quad < OCD = < ODC = 180^{0} - (180^{0} - 2x^{0}) = 2x^{0}$$
$$< DOC = 180^{0} - (69^{0} + x^{0}) = 111^{0} - x^{0}, < ODC = < OCD = 2x^{0}, \text{ isosceles } \Delta$$

From 
$$\triangle OCD$$
  
 $< OCD + < ODC + < DOC = 180^{\circ}$   
 $2x^{\circ} + 2x^{\circ} + 111^{\circ} - x^{\circ} = 180^{\circ}$   
 $3x^{\circ} = 69^{\circ}$   
 $x^{\circ} = \frac{69^{\circ}}{3} = 23^{\circ}$ 

2. (a) The dimensions of a cuboid have the ratio of 8:5:3, which has a surface area of 63200 cm<sup>2</sup>, then what is the volume of the cuboid?

#### Solution

Let the dimensions be 8x, 5x and 3x. Surface area = 63200 cm<sup>2</sup>

Surface area of a cuboid = 2(LB + LH + BH)

$$63200 = 2 \lfloor (8x+5x)(8x+3x)(5x+3x) \rfloor$$
  

$$63200 = 2 \lfloor 40x^2 + 24x^2 + 15x^2 \rfloor$$
  

$$63200 = 2 \lfloor 79x^2 \rfloor$$
  

$$63200 = 158x^2$$
  

$$x^2 = 400$$
  

$$x = \pm \sqrt{400}$$
  

$$x = -20 \text{ or } x = 20 \quad \therefore x = 20$$

The dimensions are; 8x = 8(20) = 160cm; 5x = 5(20) = 100cm; 3x = 3(20) = 60cm

The volume of the cuboid =  $(L \times B \times H) = 160 \times 100 \times 60 = 960000 cm^3$ 

(b) Two people were walking in opposite directions. The first person walked 8 cm and then took right and walked 15cm. The second person walked 7 cm and then took right and walked 24cm. Sketch an appropriate diagram that depicts the problem. How far apart are the two people?

#### Solution



Solution  $x^2 = 15^2 + 8^2$  $x = \sqrt{225 + 64} = \sqrt{289} = 17cm$ 

Also  $y^2 = 7^2 + 24^2$   $y = \sqrt{49 + 576} = \sqrt{625} = 25cm$ The two people are 17 + 25 = 42cm apart

(c.) The equation of a given line is  $3x - 4y = \frac{2}{3}$ . Find the slope and the y-intercept

# Solution

$$3x - 4y = \frac{2}{3}$$
  
we make y the subject  
$$4y = 3x - \frac{2}{3}$$
  
$$y = \frac{3}{4}x - \frac{1}{6}$$
  
$$\therefore m = \frac{3}{4} = slope \text{ and } -\frac{1}{6} = y \text{ intercept} = c$$